成都业贤科技有限公司

脚本命令-EasyHost

实例

业贤科技 2018-7-6

本文档详细描述了 TCM 的中脚本命令的实例使用,供使用 TCM 系列温控器的用户参考。更多详细信息,请访问 www.yexian.com。

成都业贤科技有限公司

温控模块本身无法实现温度曲线,或者温度循环功能。但是通过上位机软件 EasyHost 的脚步功能,则可以实现温度循环效果。

1. 制定实现目标

本次以下述图为温控实现目标为例。

2. 操作步骤

1) 将上位机软件 EasyHost 打开,选择对应型号温控模块。(注:此处以 M115 为例,为防止误操作,并未连接下位机,若需要也可直接连接下位机)

增加新的下位机		×
选择地址	0	
选择型号	TCX-X115 ~	
选择版本	TCM-#115_V8.0.20210520 TCM-#115_V8.0.20181226	
0	K Cancel	

2) 设置"打开温控"

① 选择"输出设置及状态"中的"开关",点击鼠标右键,选择"添加到自动脚本"。

.	第1通道温控	参数名	参数值	单位	増大	减小	保存	帮助	数据处理	模块
		最大输出电压		v	增大	减小	保存	帮助	自动更新	第1通道温控
	·····································	冷热电压比值			増大	减小	保存	帮助	自动更新	第1通道温控
		输出模式			増大	减小	保存	帮助	自动更新	第1通道温控
	·····································	开关			増大	减小	保存	帮助	自动更新	第1通道温控
		功工输出状态			增大	减小	保存	帮助	自动更新	第1通道温控
	·····································	预计输出电压		v	增大	减小	保存	帮助	自动更新	第1通道温控
		实际输出电压		v	增大	减小	保存	帮助	自动更新	第1通道温控
		实际输出电流		А	增大	减小	保存	帮助	自动更新	第1通道温控
ωı										

② 在"脚本编程"中查看添加的命令,并进行修改。通过上一步骤中"开关"后的帮助可知,0表示关闭,1表示打开。因此将对应添加的脚本命令操作值改为"1"。

3) 设置"25℃,10秒"

 右键点击"调节温度",并添加至脚本命令。修改操作值为25。(注意,此时脚本命 令中的"命令"为"=",表示将对应参数设置为操作值)

② 右键点击"实际温度",并添加至脚本命令。修改操作值为 25,辅助变量设置为 0. 02。
当温度不满足 25±0. 02℃时,会持续向下位机询问该命令,直到满足条件才会继续执行下一步。(注意:此时脚本命令中的"命令"为"?",表示验证对应参数为是否为操作值,辅助变量为其带宽。)

③ 点击灰色界面空白处,选择"增加延时命令",该命令为延时下一步脚本命令。操作 值为延时的时间,单位为秒。因此,此处将操作值改为10。

脚才	文才	件名									
		下位机地址	模块	参数	命	ş	操作值	辅助变量	计数器	寄存器序号	说明
	0	0	TC1	TCSW	=	\sim	1	1	0	-1	开关
	1	0	TC1	TCADJTEMP	=	\sim	25	1	0	-1	调节温度
•	2	0	TC1	TCACTTEMP	?	\sim	25	0.02	0	-1	实际温度
				增加延时省	谷令						

4) 设置"0.08℃/秒"

右键点击"温度限速",修改操作值为0.08。

5) 再依次设置"35℃, 30 秒"、"0.04℃/秒"、"25℃, 20 秒", 操作同上。

6) "0.08℃/秒 --> 35℃, 30 秒 --> 0.04℃/秒 --> "35℃, 20 秒"相当于重复执行了前面的指令,因此可以使用"跳转命令"。

① 点击灰色界面空白处,选择"增加跳转命令",将其添加到脚本中。

增加延时命令 增加空白命令
増加空白命令

② 跳转命令为转到"操作值"行继续执行;共跳转"辅助变量"次。可实现部分脚本循环 N 次的功能。从之前添加的命令可看出,是由第 4 行开始重复执行 1 次,因此将操作值改为 4,辅助变量为 1。

	下位机地址	模块	参数	命	ş	操作值	辅助变量	计数器	寄存器序号	说明
0	0	TC1	TCSW	=	\sim	1	1	0	-1	开关
1	0	TC1	TCADJTEMP	=	\sim	25	1	0	-1	调节温度
2	0	TC1	TCACTTEMP	?	\sim	25	0.02	0	-1	实 <mark>际温度</mark>
3	0	1	SCRIPTDELAY	=	\sim	10	1	0	-1	延时
4	0	TC1	TCRAMPSPEED	=	\sim	0.08	1	0	-1	温度限速
5	0	TC1	TCADJTEMP	=	\sim	35	1	0	-1	调节温度
6	0	TC1	TCACTTEMP	?	\sim	35	0.02	0	-1	实 <mark>际温度</mark>
7	0	1	SCRIPTDELAY	=	\sim	30	1	0	-1	延时
8	0	TC1	TCRAMPSPEED	=	\sim	0.04	1	0	-1	温度限速
9	0	TC1	TCADJTEMP	=	\sim	25	1	0	-1	调节温度
10	0	TC1	TCACTTEMP	?	\sim	25	0.02	0	-1	实际温度
11	0	1	SCRIPTDELAY	=	\sim	20	1	0	-1	延时
12	0	1	SCRIPTGO	=	\sim	4	1	0	-1	跳转

7) 设置"最快升温速率"

操作同类似步骤 "4)"。由于需要追求最快,则温度限速需要设置为 1 个比较大的值。 一般升温速率受 TEC 自身的升温极限限制,因此只要超过该值就行,此处设置为 10.

升温速度= 温升/时间 = (输入功率 减 耗散功率)/热容量

因此,提高升温速度的方法如下:

1. 增大输入的 TEC 功率。可以增大电压,但是不能超过 TEC 的电压承受极限,否则会损坏 TEC。也可以使用多个 TEC,但是要求温控器能够驱动能力要足够。

2. 减小耗散功率,比如给被温控物体增加保温罩等措施

3. 减小被温控物体热容,比如减小被温控物体体积,更换合适的材质等。

8) 依次设置"40℃,40秒"、"最快降温速率"、"25℃,20秒"、"温控关闭"。

3. 验证

连接下位机,并执行脚本命令,通过绘制温度曲线观察是否符合预期设定,并进行根据需 要进行适当的修改。

4. 保存脚本命令

点击"保存脚本文件",以便下次直接使用。

5. 注意

脚本命令还有更多使用方式,具体请看 EasyHost 中的帮助。

附录1 命令模板

	下位机地址	模块	参数	命	ş	操作值	辅助变量	计数器	寄存器序号	说明
0	0	TC1	TCSW	=	\sim	1	1	0	-1	开关
1	0	TC1	TCADJTEMP	=	\sim	25	1	0	-1	调节温度
2	0	TC1	TCACTTEMP	?	\sim	25	0.02	0	-1	实际温度
3	0	1	SCRIPTDELAY	=	\sim	10	1	0	-1	延时
4	0	TC1	TCRAMPSPEED	=	\sim	0.08	1	0	-1	温度限速
5	0	TC1	TCADJTEMP	=	\sim	35	1	0	-1	调节温度
6	0	TC1	TCACTTEMP	?	\sim	35	0.02	0	-1	实际温度
7	0	1	SCRIPTDELAY	=	\sim	30	1	0	-1	延时
8	0	TC1	TCRAMPSPEED	=	\sim	0.04	1	0	-1	温度限速
9	0	TC1	TCADJTEMP	=	\sim	25	1	0	-1	调节温度
10	0	TC1	TCACTTEMP	?	\sim	25	0.02	0	-1	实 <mark>际温度</mark>
11	0	1	SCRIPTDELAY	=	\sim	20	1	0	-1	延时
12	0	1	SCRIPTGO	=	\sim	4	1	0	-1	跳转
13	0	TC1	TCRAMPSPEED	=	\sim	10	1	0	-1	温度限速
14	0	TC1	TCADJTEMP	=	\sim	40	1	0	-1	调节温度
15	0	TC1	TCACTTEMP	?	\sim	40	0.02	0	-1	实 <mark>际温度</mark>
16	0	1	SCRIPTDELAY	=	\sim	40	1	0	-1	延时
17	0	TC1	TCADJTEMP	=	\sim	25	1	0	-1	调节温度
18	0	TC1	TCACTTEMP	?	\sim	25	0.02	0	-1	实 <mark>际温度</mark>
19	0	1	SCRIPTDELAY	=	\sim	20	1	0	-1	延时
▶ 20	0	TC1	TCSW	=	\sim	0	1	0	-1	开关

附录2温度曲线效果

注意:

1. 在开始运行脚本之前,对温控器设置了最大输出电压,过压/过流保护,PID参数等。

2. 配套 EasyHost 软件版本 V6.2。